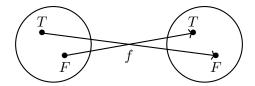
Assignment 0

CS 7480: Categories for PL, Fall 2025 Steven Holtzen and John M. Li

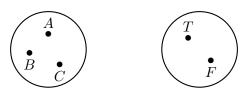
Due Monday, Sept 15 11:59PM EST

Problem 1 (Functions). A function $f:A\to B$ is a binary relation between inputs and outputs: $f\subseteq A\times B$. This relation satisfies a special property called *functionality*, which says that to each input a in A there is exactly one output b in B such that the pair (a,b) is in f. The common notation f(a)=b then abbreviates $(a,b)\in f$, with the functionality of f ensuring that this notation does not lead to contradiction.

Part 1.1. A function can be depicted as a collection of arrows connecting each point in its domain to the corresponding output in its codomain. For instance, the following picture depicts the negation function on the two-element set of Booleans $\{T, F\}$.



Draw all functions between the following two finite sets:



Then, pick your favorite function and write it out as a set of input-output pairs.

Part 1.2. Let $f: \mathbb{R} \to \mathbb{R}$ be the squaring function $f(x) = x^2$. As a set of pairs,

$$f = \{(x, x^2) \mid x \in \mathbb{R}\}. \tag{1}$$

As with any such set, one can swap the order of elements in each pair to obtain a new set

$$g = \{(x^2, x) \mid x \in \mathbb{R}\}.$$
 (2)

Is this new set g a function? What if x^2 were replaced by x^3 ?

Problem 2 (Equivalence Relations). An *equivalence relation* \approx on a set X is a binary relation $\approx \subseteq X \times X$, satisfying the following three conditions:

- (Reflexive) $x \approx x$ for each $x \in X$;
- (Transitive) $x \approx y$ and $y \approx z$ implies $x \approx z$ for every $x, y, z \in X$;
- (Symmetric) $x \approx y$ implies $y \approx x$ for every $x, y \in X$.

The *equivalence class for an element* x, written [x], is the set of elements of X that are equivalent to x, i.e. $[x] = \{y \in X \mid x \approx y\}$. The set of all equivalence classes is written $X/_{\approx} = \{[x] \mid x \in X\}$, and is called the *quotient* of X by \approx .

Part 2.1. Show that the relation $p \subseteq X \times X/_{\approx}$ defined by $p = \{(x, [x]) \mid x \in X\}$ is functional, making p a function $X \to X/_{\approx}$.

Part 2.2. Let \approx be the equivalence relation on \mathbb{Z} defined by $i \approx j$ if and only if i-j is even. Determine how many elements are in $\mathbb{Z}/_{\approx}$, and give an English description describing what the function $p: \mathbb{Z} \to \mathbb{Z}/_{\approx}$ does.

Problem 3 (STLC). Recall the definition of the simply-typed λ -calculus (STLC). Terms, types, and contexts in STLC are formed from the following grammar:

$$\begin{split} \mathsf{Type} \ni A, B &::= 1 \mid A \times B \mid A \to B \\ \mathsf{Term} \ni M, N &::= \langle \rangle \mid x \mid \langle M, N \rangle \mid \mathsf{proj}_1 \ M \mid \mathsf{proj}_2 \ M \mid \lambda x : A.M \mid MN \\ \mathsf{Ctx} \ni \Gamma &::= \bullet \mid \Gamma, x : A \end{split}$$

where \bullet denotes the empty context. For simplicity, we require that every variable in a context Γ is distinct. This grammar is accompanied by the following standard typing rules:

$$\frac{\Gamma \vdash A : A \times B}{\Gamma \vdash A : A : A} (T2) \qquad \frac{\Gamma \vdash M : A \quad \Gamma \vdash N : B}{\Gamma \vdash A : A \times B} (T3) \qquad \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \operatorname{proj}_1 M : A} (T4)$$

$$\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \operatorname{proj}_2 M : B} (T5) \qquad \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x : A : M : A \to B} (T6) \qquad \frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash M N : B} (T7)$$

In the past, you may have seen the semantics of STLC given by a stepping relation. However, it is also possible to assign a semantics to STLC using an equational theory, defined inductively by the following rules [1]:

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash M \equiv M : A} (1) \qquad \frac{\Gamma \vdash M \equiv N : A}{\Gamma \vdash N \equiv M : A} (2) \qquad \frac{\Gamma \vdash M \equiv N : A}{\Gamma \vdash M \equiv O : A} (3)$$

$$\frac{\Gamma \vdash M \equiv M' : A}{\Gamma \vdash M, N \Rightarrow (M', N') : A \times B} (5)$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \text{proj}_1 \langle M, N \rangle \equiv M : A} (6) \qquad \frac{\Gamma \vdash M : A}{\Gamma \vdash \text{proj}_2 \langle M, N \rangle \equiv N : B} (7)$$

$$\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \langle \text{proj}_1 M, \text{proj}_2 M \rangle \equiv M : A} (8) \qquad \frac{\Gamma \vdash M : A \to B}{\Gamma \vdash \langle \text{hom}(\Gamma) \rangle} (9)$$

$$\frac{\Gamma \vdash M \equiv M' : A \to B}{\Gamma \vdash M \equiv M' : A \Rightarrow B} \qquad \frac{\Gamma \vdash N \equiv N' : A}{\Gamma \vdash \langle \text{hom}(\Gamma) \rangle} (10)$$

$$\frac{\Gamma \vdash M \equiv M' : A \to B}{\Gamma \vdash M \equiv M' : A \Rightarrow B} \qquad \frac{\Gamma \vdash N \equiv N' : A}{\Gamma \vdash \langle \text{hom}(\Gamma) \rangle} (11)$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \langle \text{hom}(\Gamma) \rangle} (12) \qquad \frac{\Gamma \vdash M : 1}{\Gamma \vdash M \equiv \langle \rangle : 1} (13)$$

In this exercise, we will review typing derivations and get practice working with the equational theory of STLC.

Part 3.1. Exhibit a derivation for the following STLC typing judgement:

$$\bullet \vdash \mathsf{proj}_1 ((\lambda x : 1 \times 1.x) \langle \langle \rangle, \langle \rangle \rangle) : 1$$

Label each applied rule.

Part 3.2. Exhibit a derivation for the following STLC typing judgement:

$$y: 1 \vdash (\lambda f: 1 \rightarrow 1.\langle f \langle \rangle, y \rangle)((\lambda x: 1.\lambda z: 1.x)\langle \rangle): 1 \times 1$$

Label each applied rule.

- **Part 3.3.** Show that \equiv forms an equivalence relation on STLC terms.
- **Part 3.4.** Exhibit a derivation showing that $((\lambda x : \mathsf{Unit} \times (\mathsf{Unit} \to \mathsf{Unit}), \mathsf{proj}_1 x) \langle \langle \rangle, \lambda y : \mathsf{Unit}, y \rangle) \equiv \langle \rangle$ using the equational rules. Label each applied rule. Give one other member of the equivalence class $[\langle \rangle]$.
- **Part 3.5.** Show that the typing rules are *deterministic*, i.e., show that there is exactly one typing derivation tree $\Gamma \vdash M : A$ if M is well-typed according to a typing context Γ . Your proof should be by structural induction on syntax.
- **Part 3.6.** Are the equational laws deterministic? If they are, prove it. If they aren't, give a counterexample.

References

[1] Eugenio Moggi. "Notions of computation and monads". In: *Information and computation* 93.1 (1991), pp. 55–92.