
Assignment 0

CS 7480: Categories for PL, Fall 2025
Steven Holtzen and John M. Li

Due Monday, Sept 15 11:59PM EST

Problem 1 (Functions). A function f : A → B is a binary relation between inputs and outputs:
f ⊆ A × B. This relation satisfies a special property called functionality, which says that to each
input a in A there is exactly one output b in B such that the pair (a, b) is in f . The common notation
f(a) = b then abbreviates (a, b) ∈ f , with the functionality of f ensuring that this notation does
not lead to contradiction.

Part 1.1. A function can be depicted as a collection of arrows connecting each point in its domain to
the corresponding output in its codomain. For instance, the following picture depicts the negation
function on the two-element set of Booleans {T, F}.

•T

•
F

•T

•
F

f

Draw all functions between the following two finite sets:

•A

•
B •

C

•T

•
F

Then, pick your favorite function and write it out as a set of input-output pairs.

Part 1.2. Let f : R → R be the squaring function f(x) = x2. As a set of pairs,

f = {(x, x2) | x ∈ R}. (1)

As with any such set, one can swap the order of elements in each pair to obtain a new set

g = {(x2, x) | x ∈ R}. (2)

Is this new set g a function? What if x2 were replaced by x3?

1



Problem 2 (Equivalence Relations). An equivalence relation ≈ on a set X is a binary relation ≈ ⊆
X ×X , satisfying the following three conditions:

• (Reflexive) x ≈ x for each x ∈ X ;

• (Transitive) x ≈ y and y ≈ z implies x ≈ z for every x, y, z ∈ X ;

• (Symmetric) x ≈ y implies y ≈ x for every x, y ∈ X .

The equivalence class for an element x, written [x], is the set of elements of X that are equivalent to
x, i.e. [x] = {y ∈ X | x ≈ y}. The set of all equivalence classes is written X/≈ = {[x] | x ∈ X}, and
is called the quotient of X by ≈.

Part 2.1. Show that the relation p ⊆ X × X/≈ defined by p = {(x, [x]) | x ∈ X} is functional,
making p a function X → X/≈.

Part 2.2. Let ≈ be the equivalence relation on Z defined by i ≈ j if and only if i − j is even.
Determine how many elements are in Z/≈, and give an English description describing what the
function p : Z → Z/≈ does.

2



Problem 3 (STLC). Recall the definition of the simply-typed λ-calculus (STLC). Terms, types, and
contexts in STLC are formed from the following grammar:

Type ∋ A,B ::= 1 | A×B | A → B

Term ∋ M,N ::= ⟨⟩ | x | ⟨M,N⟩ | proj1 M | proj2 M | λx : A.M | MN

Ctx ∋ Γ ::= • | Γ, x : A

where • denotes the empty context. For simplicity, we require that every variable in a context Γ is
distinct. This grammar is accompanied by the following standard typing rules:

Γ ⊢ ⟨⟩ : 1
(T1)

Γ(x) = A

Γ ⊢ x : A
(T2)

Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ ⟨M,N⟩ : A×B
(T3)

Γ ⊢ M : A×B

Γ ⊢ proj1 M : A
(T4)

Γ ⊢ M : A×B

Γ ⊢ proj2 M : B
(T5)

Γ, x : A ⊢ M : B

Γ ⊢ λx : A.M : A → B
(T6)

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B
(T7)

In the past, you may have seen the semantics of STLC given by a stepping relation. However,
it is also possible to assign a semantics to STLC using an equational theory, defined inductively by
the following rules [1]:

Γ ⊢ M : A

Γ ⊢ M ≡ M : A
(1)

Γ ⊢ M ≡ N : A

Γ ⊢ N ≡ M : A
(2)

Γ ⊢ M ≡ N : A Γ ⊢ N ≡ O : A

Γ ⊢ M ≡ O : A
(3)

Γ ⊢ M ≡ M ′ : A Γ ⊢ N ≡ N ′ : B

Γ ⊢ ⟨M,N⟩ ≡ ⟨M ′, N ′⟩ : A×B
(5)

Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ proj1 ⟨M,N⟩ ≡ M : A
(6)

Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ proj2 ⟨M,N⟩ ≡ N : B
(7)

Γ ⊢ M : A×B

Γ ⊢ ⟨proj1 M, proj2 M⟩ ≡ M : A
(8)

Γ ⊢ M : A → B x /∈ dom(Γ)

Γ ⊢ (λx : A.Mx) ≡ M : A → B
(9)

Γ ⊢ M ≡ M ′ : A → B Γ ⊢ N ≡ N ′ : A

Γ ⊢ MN ≡ M ′N ′ : B
(10)

Γ, x : A ⊢ M ≡ N : B

Γ ⊢ (λx : A.M) ≡ (λx : A.N) : A → B
(11)

Γ ⊢ M : A Γ, x : A ⊢ N : B

Γ ⊢ (λx : A.N)M ≡ N [M/x] : B
(12)

Γ ⊢ M : 1

Γ ⊢ M ≡ ⟨⟩ : 1
(13)

In this exercise, we will review typing derivations and get practice working with the equational
theory of STLC.

Part 3.1. Exhibit a derivation for the following STLC typing judgement:

• ⊢ proj1 ((λx : 1× 1.x)⟨⟨⟩, ⟨⟩⟩) : 1

Label each applied rule.

3



Part 3.2. Exhibit a derivation for the following STLC typing judgement:

y : 1 ⊢ (λf : 1 → 1.⟨f⟨⟩, y⟩)((λx : 1.λz : 1.x)⟨⟩) : 1× 1

Label each applied rule.

Part 3.3. Show that ≡ forms an equivalence relation on STLC terms.

Part 3.4. Exhibit a derivation showing that ((λx : Unit× (Unit → Unit). proj1 x) ⟨⟨⟩, λ y : Unit. y⟩) ≡
⟨⟩ using the equational rules. Label each applied rule. Give one other member of the equivalence
class [⟨⟩].

Part 3.5. Show that the typing rules are deterministic, i.e., show that there is exactly one typing
derivation tree Γ ⊢ M : A if M is well-typed according to a typing context Γ. Your proof should
be by structural induction on syntax.

Part 3.6. Are the equational laws deterministic? If they are, prove it. If they aren’t, give a coun-
terexample.

References

[1] Eugenio Moggi. “Notions of computation and monads”. In: Information and computation 93.1
(1991), pp. 55–92.

4


