Assignment 0

CS 7480: Categories for PL, Fall 2025
Steven Holtzen and John M. Li

Due Monday, Sept 15 11:59PM EST

Problem 1 (Functions). A function f : A — B is a binary relation between inputs and outputs:
f € A x B. This relation satisfies a special property called functionality, which says that to each
input a in A there is exactly one output b in B such that the pair (a, b) is in f. The common notation
f(a) = b then abbreviates (a,b) € f, with the functionality of f ensuring that this notation does
not lead to contradiction.

Part1.1. A function can be depicted as a collection of arrows connecting each point in its domain to
the corresponding output in its codomain. For instance, the following picture depicts the negation
function on the two-element set of Booleans {7, F'}.

————l

Draw all functions between the following two finite sets:

Then, pick your favorite function and write it out as a set of input-output pairs.

Part 1.2. Let f : R — R be the squaring function f(z) = 22. As a set of pairs,

f=A{(z,2*) |z €R}. (1)

As with any such set, one can swap the order of elements in each pair to obtain a new set

9={(%2) |z eR}. (2)

Is this new set g a function? What if 22 were replaced by z:3?

Problem 2 (Equivalence Relations). An equivalence relation ~ on a set X is a binary relation ~ C
X x X, satisfying the following three conditions:

¢ (Reflexive) z =~ x for each x € X
¢ (Transitive) z ~ y and y =~ z implies x ~ z for every z,y,2 € X;
* (Symmetric) z ~ y implies y ~ x for every z,y € X.

The equivalence class for an element x, written [x], is the set of elements of X that are equivalent to
z,ie. [z] = {y € X | z = y}. The set of all equivalence classes is written X/~ = {[z] | z € X'}, and
is called the quotient of X by ~.

Part 2.1. Show that the relation p C X x X/~ defined by p = {(z,[z]) | * € X} is functional,
making p a function X — X/~.

Part 2.2. Let = be the equivalence relation on Z defined by i ~ j if and only if i — j is even.
Determine how many elements are in Z/~, and give an English description describing what the
function p : Z — 7/~ does.

Problem 3 (STLC). Recall the definition of the simply-typed A-calculus (STLC). Terms, types, and

contexts in STLC are formed from the following grammar:

Type> A,B:=1|AxB|A— B
Term > M,N == () |z | (M, N) | proj; M | projo M | Az : A.M | MN
CtxoT u=e |z : A

where e denotes the empty context. For simplicity, we require that every variable in a context I' is

distinct. This grammar is accompanied by the following standard typing rules:
I'-M:AxB
(T4)

Iz)=A 'rM:A THN:B
o 1) (12) (13) :
'=(:1 FFz:A '-(M,N): Ax B 't proj; M : A
I'-M:AxB I'e:A+-M:B '-M:A—B TFN:A
(T6) I'-MN:B (T7)

: (1)
' proj, M : B 'cXx:AM:A— B

In the past, you may have seen the semantics of STLC given by a stepping relation. However,
it is also possible to assign a semantics to STLC using an equational theory, defined inductively by

the following rules [1]:

'FM: A FI—MEN:A2 TFM=N:A FI—NEO:A(3)
'-M=M:A TFN=M:A T'FM=0:A4
TrEM=M:A FP—NEN’:B(S)

T'H(M,Ny=(M' N):Ax B

'-M:A Fl—N:B(7)
't proj, (M,N)=N: B

'EM:A FFN:B(G)
't proj; (M,N)y=M: A

'-M:AxB ®) '-M:A—B a;gédom(F)(g
I'F (proj; M,proj, M) =M : A '-(AN:AMz)=M:A— B

'z:AFM=N:B
(10) (11)
'(A:AM)=(M:AN): A— B

r-Mm=M:A—B I'EFN=N:A

'MN=MN:B

I'EM:1

rrar=0:1 Y

r-M:A I'e:A-N:B (12)
'(A\x: AN)M=N[M/z]: B

In this exercise, we will review typing derivations and get practice working with the equational

theory of STLC.
Part 3.1. Exhibit a derivation for the following STLC typing judgement:
o b proj; (Az: 1x1.z)((), () : 1
Label each applied rule.

Part 3.2. Exhibit a derivation for the following STLC typing judgement:
y:1EAf 1= 1(fO,y)((Ax: 1A z:1.2)()): 1 x1

Label each applied rule.
Part 3.3. Show that = forms an equivalence relation on STLC terms.

Part 3.4. Exhibit a derivation showing that ((Az : Unit x (Unit — Unit). proj;) ((), Ay : Unit.y)) =
() using the equational rules. Label each applied rule. Give one other member of the equivalence
class [()].

Part 3.5. Show that the typing rules are deterministic, i.e., show that there is exactly one typing
derivation tree I' = M : A if M is well-typed according to a typing context I'. Your proof should
be by structural induction on syntax.

Part 3.6. Are the equational laws deterministic? If they are, prove it. If they aren’t, give a coun-
terexample.

References

[1] Eugenio Moggi. “Notions of computation and monads”. In: Information and computation 93.1
(1991), pp. 55-92.

